Previous Year Questions Related From These Concepts

Q1) Let $y = e^{2 \sin^3 t} + (\tan^2 t)$, find $\frac{dy}{dx}$ Solution: We are given that $y = e^{x \sin^2 t} + (\tan^2 t)$ where $u = e^{x \sin^2 t}$ and $v = (\tan^2 t)$ now $\frac{du}{dx} = e^{x \tan^2 t} \frac{d}{dx} (x \sin^2 t) = e^{x \tan^2 t} [3x^2 \cos^2 t + \sin^2 t]$ $v = (\tan^2 t) = \log v = x \log \tan v$ Differentiate w.s.t $t = u = \cot^2 t$ $\frac{dv}{dx} = (\tan^2 t) (\frac{2x}{\sin^2 t} + \log t)$ $\frac{dv}{dx} = (\tan^2 t) (\frac{2x}{\sin^2 t} + \log t)$

Mone, $\frac{dy}{dx} = e^{x \sin x^2 \left(x \sin x^2 + 3x^2 \cos x^2 \right)} + (tenn)^2 \left(\frac{2x}{x \cos x^2} + \log t \cos x \right)$